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Abstract

In this report, I am giving a summary of my visit at UWC in Cape
Town, and I am describing the results we have achieved during this
visit.

1 Summary of Visit

I arrived in CPT on Friday, May 19, 2023, and I left 21 days later, on Thurs-
day, June 8, 2023. During my visit, I was accommodated in the Bell Rosen
Guest House in Bellville. A rental car was arranged for me, which I used
to travel to the campus of UWC and back. I had an office there. Together
with my host, Professor Kailash Patidar, who is the Chair of the Department
of Mathematics and Applied Mathematics at UWC, we held daily meetings,
either in my office or in his office, sometimes at my hotel and at his house.
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Figure 1: At Table Mountain

During the first week, we discussed the theory of time scales, as presented
in my books [2, 3]. In the second week, we discussed discretization schemes,
as constructed by Professor Patidar in [7,8]. In the third week, we put these
two ingredients together to develop a systematic approach how to translate
these (continuous-time) models into dynamic equations on time scales. The
details of our investigations are presented in Section 2 of this report. We are
still in the process of preparing a research paper summarizing our results and
submitting it for publication in a high-level international journal. During my
visit, we also had a nice social program, visiting Franschhoek, Stellenbosch,
and the sights of Cape Town, see Figure 1. We also visited together several
restaurants and wineries. It was raining a lot during my visit, but on the
last Sunday, the weather was nice, and I hiked up alone the Table Mountain
through the Platteklip Gorge.
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2 Results of Visit

During my stay at UWC, Professor Patidar and I have developed a method
how to “translate” any continuous-time model (consisting of differential equa-
tions) into a time-scales (see [2,3]) model in a “correct” way, namely preserv-
ing nonnegativity of solutions that start with nonnegative initial conditions,
and preserving other important properties of solutions. Some related results
are given in [4–6]. This has direct applications to discrete-time models and
quantum-time models. In order to illustrate our method, we took three im-
portant systems from epidemiology literature and performed our analysis.
The first pertinent system has two equations, the second one has four equa-
tions, and the third one has six equations. In the rest of this section, we now
present our results for each of these models.

2.1 Two Equations

This system originates in [7, Equation (1)] and models the spread of a disease
in a population that is subdivided into compartments of susceptible (S(t))
and infected (I(t)) subpopulations given by

S ′ = B − βSI −mS + γI,

I ′ = βSI − (m+ d+ γ)I,
(1)

where B is the recruitment rate of individuals into the population, β is the
effective contact rate, m is the natural death rate, γ is the recovery rate, and
d is the disease-induced death rate. Our time scales analogue of (1) appears
as

S∆ = B − βSσI −mSσ + γIσ,

I∆ = βSσI − (m+ d+ γ)Iσ.
(2)

For isolated time scales (e.g., when T = Z or T = qN0), (2) can be, after some
time scales calculations, rewritten as

Sσ =
S + µB + µγI

1+µ(m+d+γ)

1 + µm+ µβ[1+µ(m+d)]
1+µ(m+d+γ)

I,

Iσ =
I(1 + µβSσ)

1 + µ(m+ d+ γ)
.

(3)

It is now clear, given all parameters are nonnegative and the initial conditions
are nonnegative, that the solutions to (3) remain nonnegative. Furthermore,
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Figure 2: Solutions of (3) when T = Z

we calculated the endemic equilibrium and the disease-free equilibrium for
(2) and performed other calculations. Some exemplary plots of solutions are
pictured in Figure 2 for T = Z and in Figure 3 for T = qN0 .

2.2 Four Equations

This system stems from [7, Equation (16)] and appears as a vaccination
model for the transmission dynamics of two HIV subtypes in a given commu-
nity. The total population (N(t)) is subdivided into the the sub-populations
of wholly susceptible individuals (X(t)), vaccinated susceptible individuals
(V (t)), individuals infected with an endemic HIV subtype 1 (Y1(t)), and
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Figure 3: Solutions of (3) when T = qN0

individuals infected with an invading HIV subtype 2 (Y2(t)), given by

X ′ = B(1 − r) −mX − β1c

N
XY1 −

β2c

N
XY2,

V ′ = Br −mV − (1 − ξ1)β1c

N
V Y1 −

(1 − ξ2)β2c

N
V Y2,

Y ′1 =
β1c

N
XY1 +

(1 − ξ1)β1c

N
V Y1 − (m+ γ1 + τ)Y1,

Y ′2 =
β2c

N
XY2 +

(1 − ξ2)β2c

N
V Y2 − (m+ γ2 + τ)Y2,

(4)
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where the parameters are described in [7, Table 6]. Our time scales analogue
of (4) appears as

X∆ = B(1 − r) −mXσ − β1c

N
XσY1 −

β2c

N
XσY2,

V ∆ = Br −mV σ − (1 − ξ1)β1c

N
V σY1 −

(1 − ξ2)β2c

N
V σY2,

Y ∆
1 =

β1c

N
XσY1 +

(1 − ξ1)β1c

N
V σY1 − (m+ γ1 + τ)Y σ

1 ,

Y ∆
2 =

β2c

N
XσY2 +

(1 − ξ2)β2c

N
V σY2 − (m+ γ2 + τ)Y σ

2 .

(5)

For isolated time scales (e.g., when T = Z or T = qN0), (5) can be, after some
time scales calculations, rewritten as

Xσ =
X + µB(1 − r)

1 + µ
(
m+ β1c

N
Y1 + β2c

N
Y2

) ,
V σ =

V + µBr

1 + µ
(
m+ (1−ξ1)β1c

N
Y1 + (1−ξ2)β2c

N
Y2

) ,
Y σ

1 =
1 + µβ1c

N
Xσ + µ(1−ξ1)β1c

N
V σ

1 + µ(m+ γ1 + τ)
Y1,

Y σ
2 =

1 + µβ2c
N
Xσ + µ(1−ξ2)β2c

N
V σ

1 + µ(m+ γ2 + τ)
Y2.

(6)

It is now clear, given all parameters are nonnegative and the initial conditions
are nonnegative, that the solutions to (6) remain nonnegative. Furthermore,
we discussed the disease-free equilibrium, the subtype 1 only equilibrium,
the subtype 2 only equilibrium, the co-existence equilibrium, and performed
other calculations. equilibrium and the disease-free equilibrium for (2) and
performed other calculations. We did some initial plots of solutions which
reassured the “correctness” of our system (5), but we still have to prepare
some exemplary plots of solutions, and these are therefore not pictured here.
They will be pictured in the final version of the paper that will be submitted
for publication.

2.3 Six Equations

This system comes from [8, Equation (2.1)] (see also [1]) and describes the
transmission dynamics of an HIV-TB co-infection, combining two states for
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HIV (HIV− and HIV+) with three states for TB (susceptible (Si), latent (Ei),
and infectious (Ii) individuals). It is given by

S ′1 =B − S1

(
k1I1 + k2I2

N

)
− ν1S1 − f(H)HS1,

E ′1 =((1 − p1)S1 − q1E1)

(
k1I1 + k2I2

N

)
− (a1 + ν1)E1 + b1I1

− f(H)HE1,

I ′1 =(p1S1 + q1E1)

(
k1I1 + k2I2

N

)
− (b1 +m1)I1 + a1E1

− f(H)HI1,

S ′2 = − S2

(
k1I1 + k2I2

N

)
− ν2S2 + f(H)HS1,

E ′2 =((1 − p2)S2 − q2E2)

(
k1I1 + k2I2

N

)
− (a2 + ν2)E2 + b2I2

+ f(H)HE1,

I ′2 =(p2S2 + q2E2)

(
k1I1 + k2I2

N

)
− (b2 +m2)I2 + a2E2

+ f(H)HI1,

(7)
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where the parameters are described in [8, Table 1]. Our time scales analogue
of (7) appears as

S∆
1 =B − Sσ1

(
k1I1 + k2I2

N

)
− ν1S

σ
1 − f(H)HSσ1 ,

E∆
1 =((1 − p1)Sσ1 − q1E

σ
1 )

(
k1I1 + k2I2

N

)
− (a1 + ν1)Eσ

1 + b1I
σ
1

− f(H)HEσ
1 ,

I∆
1 =(p1S

σ
1 + q1E

σ
1 )

(
k1I1 + k2I2

N

)
− (b1 +m1)Iσ1 + a1E

σ
1

− f(H)HIσ1 ,

S∆
2 = − Sσ2

(
k1I1 + k2I2

N

)
− ν2S

σ
2 + f(H)HSσ1 ,

E∆
2 =((1 − p2)Sσ2 − q2E

σ
2 )

(
k1I1 + k2I2

N

)
− (a2 + ν2)Eσ

2 + b2I
σ
2

+ f(H)HEσ
1 ,

I∆
2 =(p2S

σ
2 + q2E

σ
2 )

(
k1I1 + k2I2

N

)
− (b2 +m2)Iσ2 + a2E

σ
2

+ f(H)HIσ1 .

(8)
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For isolated time scales (e.g., when T = Z or T = qN0), (8) can be, after some
time scales calculations, rewritten as

Sσ1 =
S1 + µB

1 + µ
((

k1I1+k2I2
N

)
+ ν1 + f(H)H

) ,
Eσ

1 =
E1 + µ(1 − p1)Sσ1

(
k1I1+k2I2

N

)
+

µb1(I1+µp1Sσ1 ( k1I1+k2I2N ))
1+µ(b1+m1+f(H)H)

1 + µ(ν1 + f(H)H) +
µ(q1( k1I1+k2I2N )+a1)[1+µ(m1+f(H)H)]

1+µ(b1+m1+f(H)H)

,

Iσ1 =
I1 + µ

(
p1S

σ
1

(
k1I1+k2I2

N

)
+
(
q1

(
k1I1+k2I2

N

)
+ a1

)
Eσ

1

)
1 + µ(b1 +m1 + f(H)H)

,

Sσ2 =
S2

1 + µ
((

k1I1+k2I2
N

)
+ ν2 − f(H)H

) ,
Eσ

2 =
E2 + µ(1 − p2)Sσ2

(
k1I1+k2I2

N

)
+

µb2(I2+µp2Sσ2 ( k1I1+k2I2N ))
1+µ(b2+m2−f(H)H)

1 + µ(ν2 − f(H)H) +
µ(q2( k1I1+k2I2N )+a2)[1+µ(m2−f(H)H)]

1+µ(b2+m2−f(H)H)

,

Iσ2 =
I2 + µ

(
p2S

σ
2

(
k1I1+k2I2

N

)
+
(
q2

(
k1I1+k2I2

N

)
+ a2

)
Eσ

2

)
1 + µ(b2 +m2 − f(H)H)

.

(9)

It is now clear, given all parameters are nonnegative and the initial conditions
are nonnegative and f satisfies an appropriate assumption, that the solutions
to (9) remain nonnegative. Furthermore, we discussed the HIV only model
and the TB only model and performed other calculations. We still have
to prepare some exemplary plots of solutions, and these are therefore not
pictured here. They will be pictured in the final version of the paper that
will be submitted for publication.
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